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We identify an unconventional route to the creation of a strange nonchaotic attractor �SNA� in a quasiperi-
odically forced electronic circuit with a nonsinusoidal �square wave� force as one of the quasiperiodic forces
through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic
attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and
get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled
�while the remaining parts of the strands of the torus remain largely unaffected� resulting in the creation of the
SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both
experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps,
Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA
via the bubbling route by the distribution of the finite-time Lyapunov exponents.
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I. INTRODUCTION

Strange nonchaotic attractors �SNAs� are considered as
typical structures of quasiperiodically forced nonlinear sys-
tems. They are geometrically strange �that is, they are fractal
in nature� just like the chaotic attractors, while all their
Lyapunov exponents are either zero or negative, which en-
sures that the underlying dynamics is nonchaotic. Further,
due to their fractal nature, the SNAs are characterized by
aperiodic oscillations. Following the pioneering work of
Grebogi et al. �1�, SNAs have been extensively investigated
theoretically in several dynamical systems �2–20�. The exis-
tence of SNAs has also been demonstrated experimentally
�21–24� in a few physically relevant situations. As a conse-
quence, several routes �scenarios having distinct signatures�
to SNAs have been reported theoretically. These include the
Heagy-Hammel route �16�, the gradual fractalization route
�13�, various types of intermittency routes �10,15,19,22�, the
blowout bifurcation route �6�, etc. As all these bifurcation
scenarios �routes to SNAs� have been well established in the
literature, we summarize the different scenarios for the for-
mation of SNAs along with their distinct signatures and
mechanisms in Table I. Reviews on SNAs can be found in
Refs. �7,25,26�.

As mentioned above, while extensive numerical studies
on the creation of SNAs via different routes are available in
the literature �2–20�, only a few experimental realizations of
them exist �21–24�. In particular, these exotic attractors were
confirmed by an experiment consisting of a quasiperiodically
forced, buckled, magnetoelastic ribbon �23�. SNAs were also
realized in analog simulations of a multistable potential �27�,
and in a neon glow discharge experiment �28�. These attrac-
tors were also shown to be related to the Anderson localiza-

tion phenomenon in the Schrödinger equation with a quasi-
periodic potential �17,29�. Very recently, SNAs have also
been observed in an excitable chemical system, namely, a
three-electrode electrochemical cell �30�. In this connection,
from an experimental point of view, nonlinear electronic cir-
cuits with suitable quasiperiodic forces turn out to be espe-
cially useful dynamical systems for the identification and
study of SNAs. For example, the type-I intermittency route
to SNA was reported in a quasiperiodically forced Murali-
Lakshmanan-Chua circuit �22�. Recently, three prominent
routes, namely, Heagy-Hammel, fractalization, and type-III
intermittency routes to SNAs, have been identified and re-
ported in a quasiperiodically forced negative conductance
series LCR circuit with a diode �24� both experimentally and
numerically by some of the present authors.

In almost all the above studies, as a general rule, the driv-
ing forces are assumed to be sinusoidal in nature. Naturally
the question arises as to what happens to the dynamics when
one or both of the driving forces are nonsinusoidal but peri-
odic. Can new routes to the creation of SNAs emerge in such
a scenario? In order to answer these questions, we consider a
quasiperiodically driven negative conductance series LCR
circuit with a diode �which was investigated in �24�� and
unravel the dynamics of the circuit with one of the forces
taken as a square wave force �nonsinusoidal� for suitable
parameter values. The main reason for choosing the square
wave as one of the driving forces is its bistable nature. Bi-
stability is responsible for hysteresis in many physical and
technical systems �31–34�. Further, the square wave has also
been used for inducing chaos in certain dynamical systems
�35�. For example a 10 MHz square wave optical message
was injected into a ring laser to produce high-dimensional
chaotic light �36�. Thus the study of the present circuit has
considerable relevance in understanding SNA transitions.

In the present proposed circuit with a square wave force
as one of the quasiperiodic forces in addition to a sinusoidal
force, we have identified a route for the formation of a SNA
which we term the bubbling route to SNA. In this route,
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bubbles appear in the strands of the torus as a function of the
control parameter, then the sizes of the bubbles increase with
the value of the control parameter, and subsequently strands
of the bubbles become increasingly wrinkled, resulting in the
creation of a SNA �while the remaining parts of the strands
of the torus outside the bubbles remain largely unaffected�.
The mechanism for this route is that the quasiperiodic orbit
becomes increasingly unstable in its transverse direction as a
function of the control parameter, which is induced by the
square-wave-type quasiperiodic force resulting in an increase
in the size of the doubled strands �bubbles� in certain parts of
the main strand and then the doubled strands become ex-
tremely wrinkled �without a complete doubling of the entire
main strand�, resulting in the SNA. In addition to this, we
have also observed four other prominent routes in the same
circuit, which include the fractalization, fractalization fol-
lowed by intermittency, intermittency, and Heagy-Hammel
routes, the details of which will be presented elsewhere.

In order to confirm the existence of the bubbling route to
the SNA in the proposed circuit, we first present a detailed
numerical analysis of the dynamical equations of the circuit
in a rescaled form for suitable values of the parameters, us-
ing various qualitative and quantitative measures to establish
this route. These include the Poincaré surface of section, the
Fourier spectrum, the largest Lyapunov exponent and its
variance, the spectral distribution function, and the distribu-
tion of finite-time Lyapunov exponents. A short account of
these measures is given in the Appendix. Next, we confirm
the results experimentally using the phase portraits of the
quasiperiodic attractors and SNAs for the corresponding val-
ues of the circuit parameters, again with appropriate quanti-
fication measures, to establish the existence of a torus and
the creation of a SNA through the bubbling route.

The paper is organized as follows. In Sec. II, we discuss
the circuit realization of the quasiperiodically forced nega-
tive conductance series LCR circuit with a diode using a
sinusoidal and a nonsinusoidal �square wave� forcing as qua-
siperiodic forces. In Sec. III, we describe the phase diagram
of the circuit where the regions corresponding to the differ-
ent dynamical transitions to SNAs are delineated as a func-

tion of the control parameters, based on our numerical analy-
sis. The creation of the SNA via the bubbling route as
confirmed in the numerical analysis is discussed in Sec. IV.
Experimental confirmation of the bubbling route to the SNA
is presented in Sec. V. Finally, we summarize our results in
Sec. VI. The Appendix contains a short summary on the
identification and characterization of SNAs and the associ-
ated routes.

II. CIRCUIT REALIZATION

In this section details about the proposed circuit are pre-
sented and the circuit equations are written in terms of the
circuit variables. Then the circuit equations are transformed
into dimensionless equations �normalized equations� using
appropriate rescaled variables, for a convenient numerical
analysis.

A. Experimental realization: Circuit equations

We consider the simple second-order nonlinear dissipative
nonautonomous negative conductance series LCR circuit
with a sinusoidal voltage generator f1�t� introduced by us
recently �24,37�, along with a second nonsinusoidal force
f2�t�, as shown in Fig. 1�a�. The circuit consists of a series
LCR network, forced by a sinusoidal voltage generator f1�t�
and a nonsinusoidal �square wave� voltage generator f2�t�
�HP 33120A series�. Two extra components, namely, a p-n
junction diode �D� and a linear negative conductor gN, are
connected in parallel to the forced series LCR circuit. The
negative conductor used here is a standard op-amp based
negative impedance converter. The diode operates as a non-
linear conductance, limiting the amplitude of the oscillator.
In Fig. 1�a�, v, iL, and iD denote the voltage across the ca-
pacitor C, the current through the inductor L, and the current
through the diode D, respectively. The actual v-i character-
istic of the diode �Fig. 1�b�� is approximated by the usual
two-segment piecewise-linear function �Fig. 1�c�� which fa-
cilitates numerical analysis considerably. The state equations
governing the presently proposed circuit �Fig. 1� are a set of

TABLE I. Routes and mechanisms for the formation of SNAs.

Type of route Mechanism

Heagy-Hammel �16� Collision of period-doubled torus with its unstable
parent

Gradual fractilization �13� Increased wrinkling of torus without any
interaction with nearby periodic orbits

Type-I intermittency �10� Due to saddle-node bifurcation, a torus is replaced
by SNA

Type-III intermittency �22� Subharmonic instability

Crisis-induced intermittency �14� Doubling of destroyed torus involves a sudden
widening of the attractor

Homoclinic collision �17� Homoclinic collisions of the quasiperiodic orbits

Blowout bifurcation �6� Due to changes in sign of the Lyapunov exponent
�T transverse to the invariant subspace S

Quasiperiodic route �9,11� Collision between a stable and an unstable torus
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two first-order nonautonomous differential equations

C
dv
dt

= iL − iD + gNv , �1a�

L
diL

dt
= − RiL − v + Ef1 sin�� f1t� + Ef2 sgn�sin�� f2t�� ,

�1b�

where

iD�v� = �gD�v − V� , v � V ,

0, v � V .
� �1c�

Here gD is the slope of the characteristic curve of the diode,
Ef1 and Ef2 are the amplitudes, � f1 and � f2 are the angular
frequencies of the forcing functions f1�t�=Ef1 sin�� f1t� and
f2�t�=Ef2 sgn�sin�� f2t��, respectively. In the absence of f2�t�,
the circuit �Fig. 1�a�� has been shown to exhibit chaos and
also strong chaos not only through the familiar period-
doubling route but also via torus breakdown followed by
period-doubling bifurcations �37�. Here our aim is to inves-
tigate the effect of the second square wave type external
forcing on the dynamics and to identify different types of
transitions to SNAs.

In order to select the appropriate set of experimental pa-
rameters for which SNAs can be actually observed, we first
carry out a detailed numerical simulation �as pointed out
below� which then serves as a guide and a characterizer for
experimental investigation. Using such an analysis, the val-
ues of the diode conductance gD, negative conductance gN,
and break voltage V are fixed as 1313 �S, −0.45 mS, and

0.5 V, respectively. We have fixed the actual experimental
values of the resistance R, inductance L, capacitance C, ex-
ternal frequency � f2, and forcing strength Ef2 of the square
wave as 1900 �, 50.3 mH, 10.35 nF, 17 033 Hz, and
400 mV, respectively, while we vary the amplitude Ef1 and
the frequency � f1 of the sinusoidal force as control param-
eters in order to observe the various dynamical states. The
forcing functions f1�t� and f2�t� are obtained from two sepa-
rate function generators of the type HP 33120A.

B. Numerical analysis: Normalized equations

In order to study the dynamics of the circuit in detail, Eqs.
�1a�–�1c� can be converted into a convenient normalized
form for numerical analysis by using the following rescaled
variables and parameters: �= t /�LC, x=v /V, y
= �iL /V���L /C�, E1=Ef1 /V, E2=Ef2 /V, �1=� f1

�LC, �2
=� f2

�LC, a=R�C /L, b=gN
�L /C, and c=gD

�L /C. The nor-
malized evolution equation so obtained from Eq. �1a�–�1c� is

ẋ = y + f�x� , �2a�

ẏ = − x − ay + E1 sin��� + E2 sgn�sin�	�� , �2b�

�̇ = �1, �2c�

	̇ = �2, �2d�

where

f�x� = ��b − c�x + c , x � 1,

bx , x � 1.
� �2e�

Here the overdot stands for differentiation with respect to �.
Equation �2a�–�2e� is then numerically integrated using a
Runge-Kutta fourth-order routine to identify the different dy-
namical scenarios corresponding to different values of the
rescaled parameters. Various interesting dynamical transi-
tions of Eq. �2a�–�2e� are described below.

III. TWO-PARAMETER PHASE DIAGRAM

The parameter space of the amplitude of the external forc-
ing E1 and the frequency �1 of the sinusoidal forcing is
scanned first numerically in the range of E1� �0.4,1.1� and
�1� �1.075,1.275� to pinpoint different dynamical behaviors
and more specifically for the occurrence of SNAs through
different routes. From this analysis, various dynamical tran-
sitions are determined as a function of the amplitude of the
external forcing E1 and its frequency �1. Further, these dy-
namical behaviors and their transitions are also confirmed
experimentally for the corresponding values of the experi-
mental parameters of the circuit given in Fig. 1.

A. Numerical analysis

To start with, we first demarcate the parameter space
�E1 ,�1�, by numerically integrating Eqs. �2a�–�2e�, into qua-
siperiodic, strange nonchaotic, and chaotic regimes by using
the various qualitative and quantitative measures as dis-

R
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Cv +
-
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-

iN

D

iD

gN
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f2(t)

(t)
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iD
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0 0.5
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id (mA)

(a)
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FIG. 1. �a� Circuit realization of a simple nonautonomous cir-
cuit. Here D is the p-n junction diode and gN is negative conduc-
tance. The external emfs are f1�t�=Ef1 sin�� f1t� and f2�t�
=Ef2 sgn�sin�� f2t��. The values of the circuit elements are fixed as
L=50.3 mH, C=10.35 nF, R=1900 �, Ef2=400 mV, and � f2

=17 033 Hz. The forcing amplitude Ef1 and its frequency � f1 are
chosen as the control parameters. �b� i-v characteristics of the p-n
junction diode. �c� Two-segment piecewise-linear function.
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cussed in the Appendix. The numerical phase diagram is
shown in Fig. 2 for E1� �0.4,1.1� and �1� �1.075,1.275�.
The various dynamical behaviors indicated in the phase dia-
gram �Fig. 2� and the interesting dynamical transitions are
elucidated in the following.

Transitions from the quasiperiodic attractor to the SNA
and subsequently to the chaotic attractor occur on increasing
the value of the amplitude of the sinusoidal force E1 for a
fixed value of its frequency �1. Strange nonchaotic attractors
created through different mechanisms are found to occur for
different values of the frequency �1 of the sinusoidal force.
Now, we will outline the ranges of values of the frequency
�1 for which SNAs arise from quasiperiodic attractors
through different mechanisms on increasing the value of the
amplitude E1 of the sinusoidal force.

A strange nonchaotic attractor created through the pro-
posed route, namely, the bubbling route, is identified in the
range of frequency �1� �1.085,1.086�. Here bubbles appear
in the strands of period-3 torus and then the bubbles get
increasingly wrinkled in the range of the amplitude E1
� �0.54,0.55� of the sinusiodal forcing resulting in the SNA.
This phenomenon is named the bubbling transition to the
SNA and it is denoted as BUB in Fig. 2. A blowup of the
two-parameter space corresponding to the bubbling transi-
tion is shown in Fig. 3. A further increase in the value of E1
ends up in the chaotic behavior indicated as C in Figs. 2 and
3. A strange nonchaotic attractor created through gradual
fractalization �F� of the period-3 �3T� quasiperiodic attractor
is identified for �1� �1.086,1.111� as a function of the am-
plitude E1� �0.5,0.55�. The intermittency route �INT� is
found to be exhibited in the range of frequency �1
� �1.111,1.1268� on increasing E1 in the range E1
� �0.5,0.55� and also for �1� �1.1512,1.2615� when E1
� �0.5,0.8�. When the frequency �1� �1.1268,1.1512�,
gradual fractalization is followed by intermittency phenom-
enon on increasing the value of the amplitude of the external
forcing E1. It is marked as �FINT� in Fig. 2. Torus-doubling

bifurcation from a period-3 torus �3T� to a period-6 �6T�
torus and then to a SNA via the Heagy-Hammel �HH�
mechanism is found to occur in the range of �1
� �1.2501,1.2615� on decreasing E1 in the range E1
� �1.1,0.8�. The transition regions between the above-
mentioned dynamical regimes are indicated by arrows in Fig.
2; they are fixed by scanning the frequency �1 of the sinu-
soidal force at its fourth decimal place. However, we do not
draw a distinct boundary between any two scenarios because
this requires a very detailed numerical analysis on a finer
parameter scale.

B. Experimental investigation

It has additionally been confirmed that the above dynami-
cal behaviors are also exhibited by the experimental circuit
for the corresponding values of the circuit parameters Ef1
�=VE1� and � f1 �=�1 /�LC� by examining the two-
dimensional projections of the corresponding attractors ob-
tained by measuring the voltage v across the capacitor C and
the current iL through the inductor L which are connected to
the X and Y channels of an oscilloscope, respectively. Here V
is the break voltage. Then, a live picture of the corresponding
power spectrum obtained from a digital storage oscilloscope
�HP 54600 series� of the projected attractor has also been
used to distinguish the different attractors. In addition to this,
the experimental data of the corresponding attractors re-
corded using a 16-bit data acquisition system �AD12-
16U�PCI�EH� at the sampling rate of 200 kHz have been
analyzed quantitatively using the different quantification
measures, namely, the spectral distribution function and the
distribution of finite time Lyapunov exponents. This informa-
tion is then utilized �i� to pinpoint the different dynamical
behaviors, �ii� to distinguish the SNAs created through dif-
ferent mechanisms, and �iii� also to compare them with the
results of numerical simulation. In the following, we will
describe only bubbling transition in detail by both numerical
simulation and experimental realization, while the results of
other known routes will be presented elsewhere.

IV. BUBBLING ROUTE TO SNA: NUMERICAL ANALYSIS

As noted above, in this route, the bubbles appear in the
strands of the torus as the value of the amplitude E1 of the

FIG. 2. �Color online� Numerical phase diagram in the �E1-�1�
plane for the circuit given in Fig. 1, represented by Eqs. �2a�–�2e�.
3T correspond to period-3 torus, F, BUB, FINT, INT, and HH de-
note the creation of SNAs through the gradual fractalization, bub-
bling, fractalization followed by intermittency, intermittency, and
Heagy-Hammel routes, respectively. C corresponds to the chaotic
attractor. Arrows indicate the transition regions between two differ-
ent types of route to the SNA.

FIG. 3. �Color online� Blowup of Fig. 2 in the bubbling transi-
tion regime indicated as BUB.
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sinusoidal forcing is increased for a fixed value of its fre-
quency �1. The sizes of the bubbles increase further on in-
creasing the amplitude E1 and the bubbles increasingly get
wrinkled �while the remaining parts of the strands of the
torus outside the bubbles remain largely unaffected� resulting
in the creation of a SNA. This bubbling route is observed in
the rather narrow range of frequency �1� �1.085,1.086� as a
function of the amplitude of the sinusoidal forcing E1
� �0.5,0.55� indicated as BUB in Figs. 2 and 3. It is to be
noted that this route is significantly different from the well-
known fractalization route �13�, where the entire strands of
the n-period torus continuously deform and get extremely
wrinkled as a function of the control parameter. The forma-
tion of SNAs through this bubbling route has been identified
in the literature for the first time to the best of our knowl-
edge. We have used both qualitative and quantitative mea-
sures, which are indicated in the Appendix, to confirm the
route. The qualitative proof is given through the Poincaré
surface of section by distinguishing geometrically between
quasiperiodic attractors and SNAs. The quantitative confir-
mation is provided using three different measures. �i� The
largest Lyapunov exponent and its variance are used to dis-
tinguish between the torus and the SNA, and SNA and cha-
otic attractors. �ii� Scaling laws deduced from the distribu-
tion function for quasiperiodic attractors and SNAs are used
to distinguish them. �iii� Finally, different routes to SNAs are
also distinguished by the different distributions of local
Lyapunov exponents. More information on the characteriza-
tion is given in the Appendix. In the following we provide
details of the confirmation of the bubbling route.

A. Poincaré surface of section plots and power spectra

We have fixed the value of the frequency of the sinusoidal
forcing as �1=1.0852 for illustration and varied its ampli-
tude in the range E1� �0.5,0.55� to elucidate the emergence
of bubbling route to SNA in the present system �2a�–�2e�.
The Poincaré surface of section plot of the three strands cor-
responding to period-3 torus for the value of E1=0.5 is
shown in Figs. 4�a� and 5�a�. The corresponding phase por-
trait and power spectrum are depicted in Figs. 6�a��i� and
6�a��ii�, respectively. As the value of the amplitude E1 is
increased further, bubbles start to appear in all the three
strands starting from E1=0.516. These are shown in Figs.
4�b� and 5�b� for E1=0.52 and the corresponding phase por-
trait and power spectrum are shown in Figs. 6�b��i� and
6�b��ii�, respectively. Further increase in the value of E1 re-
sults in an increase in the size of the bubbles as shown in
Figs. 4�c� and 5�c� for the value of E1=0.54, whose phase
portrait and power spectrum are shown in Figs. 6�c��i� and
6�c��ii�, respectively. Beyond the value of E1=0.54, the
strands of bubbles deform and get increasingly wrinkled
�while the other parts of the strands of period-3 torus outside
the bubbles remain unaltered as seen in Fig. 5�d�� leading to
the formation of the SNA as depicted in Fig. 4�d� for the
value of E1=0.546. The phase portrait and power spectrum
for this value of E1 are shown in Figs. 6�d��i� and 6�d��ii�,
respectively. Finally, to confirm that the SNA transits to a
chaotic attractor beyond E1=0.55, we have depicted the

Poincaré surface of section of the latter in Figs. 4�e� and 5�e�
with the corresponding attractor and power spectrum in Fig.
6�e� for E1=0.56.

The mechanism for the bubbling route is that the quasip-
eriodic orbit becomes increasingly unstable in its transverse
direction as a function of the control parameter �E1�, result-
ing in the formation of the doubled strands �bubbles�, as seen
in Figs. 4�b� and 5�b�, in certain parts of the main strands.
This instability of the quasiperiodic attractor arises due to the
presence of the square wave pulse �finite amplitude for finite
durations�. Further increase in the value of the amplitude of
the forcing �E1� results in an increase in the size of the
doubled strands �bubbles� as shown in Figs. 4�c� and 5�c�,
and then the doubled strands become extremely wrinkled
�without a complete doubling of the entire main strand� re-
sulting in the SNA as depicted in Figs. 4�d� and 5�d�.

We now provide quantitative confirmation of the above
results to distinguish between torus and SNA, and SNA and
chaos.

B. Largest Lyapunov exponent and its variance

The largest Lyapunov exponent � and its variance �, that
is, the variance of � from finite-time Lyapunov exponents

i�N�, i=1,2 , . . . ,M, of length N, defined as
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FIG. 4. Projection of the numerically simulated Poincaré surface
of section of the attractors of Eqs. �2a�–�2e� in the ��-x� plane for a
fixed value of the frequency of the sinusoidal forcing, �1=1.0852,
as a function of its amplitude E1, indicating the transition from a
quasiperiodic attractor to a SNA through the bubbling route: �a�
period-3 torus �3T� for E1=0.5, �b� bubbled strands of period-3
torus �3T� for E1=0.52, �c� enlarged bubbles in the strands of
period-3 torus �3T� for E1=0.54, �d� fractalized bubbles for E1

=0.546 with the remaining parts �away from the bubble� of the
strands unaffected, and �e� chaotic attractor �widely interspersed
bubbles� for E1=0.56.
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� =
1

M
�
i=1

M

�� − 
i�N��2 �3�

are shown in Fig. 7 in the range of E1� �0.54,0.546�. The
attractor depicted in Fig. 6�d��i� for the value of E1=0.546 is
strange but it is nonchaotic as evidenced by the negative
value of the Lyapunov exponent shown in Fig. 7�a�. It is also
to be noted that both the Lyapunov exponents and its vari-
ance �Fig. 7�b�� clearly indicate a critical value of amplitude
E1

c =0.5432 �E1�E1
c�, below which a torus exists and above

which �E1�E1
c� the SNA appears. The regions of torus and

SNA are clearly indicated by smooth and irregular variations,
respectively, in the values of both the Lyapunov exponents �
and its variance �. Finally the transition of the SNA into a
chaotic attractor is confirmed by the change in the largest
Lyapunov exponent from negative to positive values at E1

c

=0.55 as shown in the inset of Fig. 7�a�.

C. Spectral distribution function and scaling laws

In order to distinguish further whether the attractors de-
picted in Figs. 6 are quasiperiodic or strange nonchaotic or
chaotic attractors, we proceed to quantify the changes in their
power spectra. The spectral distribution function, defined as
the number of peaks in the Fourier amplitude spectrum larger
than some value �, is used to distinguish between quasiperi-
odic attractors and SNAs as well as SNAs and chaotic attrac-
tors. The quasiperiodic attractors obey a scaling relationship
N���	 log10�1 /��, while the SNAs satisfy a scaling power-
law relationship N���	�− ,1��2 �2�. Similarly for the
chaotic attractor, the scaling relation is N���	�− ,�2.

Spectral distribution functions �filled circles� of the torus
�Fig. 6�a�� and bubbled torus �Fig. 6�b�� satisfy the scaling
relation N���	 log10�1 /�� as indicated by the solid line in
Figs. 8�a� and 8�b�, respectively, which is the characteristic
of a torus. On the other hand the spectral distribution func-
tion of the SNA �Fig. 6�d�� exhibits power-law behavior as
depicted in Fig. 8�c� �filled circles� with the value of the
exponent =1.88, confirming the existence of the SNA. For
the chaotic attractor �Fig. 6�e��, the scaling exponent �Fig.
8�d�� turns out to be =3.5 as required. Again the solid lines
in Figs. 8�c� and 8�d� represent the scaling laws for SNA and
chaos, respectively.

D. Distribution of local Lyapunov exponents

In addition to the qualitative discussion through the
Poincaré surface of section plots in the �� ,x� plane �Figs. 4
and 5� in distinguishing the type of route through which the
SNA appears, it is also possible to distinguish the route using
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FIG. 5. Enlargments of Figs. 4 to show the bubbling transition
to a strange nonchaotic attractor.
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FIG. 6. Projection of the numerically simulated attractors and
their power spectrum of Eqs. �2a�–�2e� for the same values of the
frequency �1 and the amplitude E1 of the sinusoidal forcing as in
Figs. 4. �a� Period-3 torus �3T�, �b� bubbled period-3 torus, �c�
period-3 torus with enlarged bubbles, �d� fractalized bubbles
�SNA�, and �e� chaotic attractor: �i� phase portrait in the �x ,y�
space; �ii� power spectrum.
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the distribution of a quantitative measure, namely, finite-time
Lyapunov exponents. It has been shown �10� that a typical
trajectory on a SNA actually possesses positive Lyapunov
exponents in finite time intervals, although the asymptotic
exponent is negative. As a consequence, it is possible to
observe different characteristics of SNAs created through
different mechanisms by a study of the differences in the
distribution of finite-time exponents P�N ,
� �10�. The distri-
bution can be obtained by taking a long trajectory and divid-
ing it into segments of length N, from which the local
Lyapunov exponent can be calculated. In the limit of large N,
this distribution will collapse to a � function P�N ,
�
→���−
�. The deviations from—and the approach to—the

limit can be very different for SNAs created through differ-
ent mechanisms �10�.

We have calculated the distribution of local Lyapunov ex-
ponents P�N ,
�, for N=2000, for the attractors shown in
Figs. 6�a��i� and 6�d��i� in order to confirm the nature of the
transition to the SNA. The distribution of the local Lyapunov
exponents for the period-3 torus �solid line� is shown in Fig.
9�a� in which the local Lyapunov exponents are peaked about
the largest Lyapunov exponents �negative values� of the torus
while that of the SNA shown in Fig. 9�b� by solid line has its
maximum at a positive value of the local Lyapunov expo-
nents. The distribution of local Lyapunov exponents for a
SNA exhibits an elongated tail in its negative values because
of the fact that in the bubbling transition parts of the strands
of the period-3 torus remain unaffected even after the cre-
ation of the SNA, which contributes largely to the negative
values. This confirms the existence of bubbling transition to
strange nonchaotic attractors.

V. BUBBLING ROUTE TO THE SNA:
EXPERIMENTAL CONFIRMATION

As a next step, in order to confirm the results of our
numerical simulation in the experimental circuit shown in
Fig. 1, a snapshot of the dynamical behavior for the corre-
sponding values of the experimental parameters is obtained
�as mentioned in Sec. II� and compared with that of the nu-
merical results. Further, the corresponding experimental data
are analyzed using various quantification measures men-
tioned in the previous section to confirm the nature of the
dynamical behavior.

A. Phase portraits and power spectra

We have depicted the snapshots of the phase portraits and
the corresponding power spectra of the attractors as seen in
the oscilloscope �which is connected to the circuit shown in
Fig. 1� in Fig. 10 for the corresponding values of the param-
eters of numerical simulation. The experimental period-3
torus and its power spectrum corresponding to the numerical
results, Fig. 6�a�, are shown in Figs. 10�a��i� and 10�a��ii�.
The attractors in the bubbling regime for the values of the
amplitude of the sinusoidal forcing Ef1=0.26 and 0.27 V are
shown in Figs. 10�b��i� and 10�c��i�, respectively. The corre-
sponding power spectra are shown in Figs. 10�b��ii� and
10�c��ii�, respectively. The experimental phase portrait of the
strange nonchaotic attractor and its power spectrum for the
value of Ef1=0.273 V are depicted in Figs. 10�d��i� and
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FIG. 7. Transition from torus to SNA through bubbling route for
the same value of frequency as in Figs. 4 and in the range of
amplitude E1� �0.54,0.546� obtained numerically. �a� Largest
Lyapunov exponent ��� and �b� its variance ���. Inset in �a� depicts
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10�d��ii�, respectively. It is also seen that the spectra of the
quasiperiodic attractors are concentrated at a small discrete
set of frequencies while the spectrum of the SNA has a much
richer set of harmonics. Further, the resemblance of the at-
tractors illustrated in Figs. 10�i� with that of the attractors in
Figs. 6�i� confirms the existence of the bubbling transition to
the SNA in this negative conductance series LCR circuit with
a diode having both sinusoidal and nonsinusoidal forces as
quasiperiodic forcings. Finally, the chaotic attractor for Ef1
=0.28 V and its power spectrum are shown in Fig. 10�e�.

B. Spectral distribution function and scaling laws

In order to confirm that the experimental phase portraits
shown in Figs. 10�a�, 10�b�, 10�d�, and 10�e� are indeed
those of the torus, bubbled torus, SNA, and chaotic attractor,
respectively, the corresponding data are examined for the
behavior of their spectral distribution. Figures 11�a� and
11�b� show the spectral distribution function �filled triangles�
for the torus in Figs. 10�a� and 10�b� satisfying the scaling
relation N���	 log10�1 /�� as indicated by the solid lines
while that of the SNA �Fig. 10�d�� shown in Fig. 11�c� obey
power-law distribution with the value of the exponent 
=1.96 lying within the characteristic value for SNAs. For the
chaotic attractor �Fig. 10�e��, the scaling exponent turns out
to be =4.0 �Fig. 11�d�� as expected.

C. Local Lyapunov exponents

Further, in order to examine whether the SNA shown in
Fig. 10�d� arises from the bubbling transition, the distribu-
tion of the local Lyapunov exponents calculated from the
experimental data of the torus �Fig. 10�a�� and the SNA �Fig.
10�d�� are depicted in Figs. 9�a� and 9�b�, respectively, as
dashed lines. The elongated tail in the distribution of the
local Lyapunov exponents even for the SNA �Fig. 10�d��
confirms the existence of undisturbed strands as shown in
Fig. 4�d�, thereby confirming experimentally the creation of
the SNA via the bubbling transition.

VI. SUMMARY AND CONCLUSION

In this paper, we have reported the creation of strange
nonchaotic attractors through a route that we term the bub-
bling route to a SNA in a negative conductance series LCR
circuit with a diode containing a nonsinusoidal �square
wave� force as one of the quasiperiodic forcings. First, we
presented the numerical analysis of the dynamical system,
namely, Eq. �1a�–�1c� of the circuit �Fig. 1� for suitable

FIG. 10. �Color online� Snapshots of the experimental attractors
and their power spectrum of the circuit shown in Fig. 1 for the
corresponding values of the frequency � f1 and the amplitude Ef1 of
the sinusoidal forcing in Fig. 4. �a� Period-3 torus �3T�, �b� bubbled
period-3 torus, �c� period-3 torus with enlarged bubbles, �d� fracta-
lized bubbles �SNA�, and �e� chaotic attractor: �i� phase portrait in
the �vC , iL� space; �ii� power spectrum.
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FIG. 11. Spectral distribution function �filled triangles� calcu-
lated from the experimental data of �a� torus �Fig. 10�a��, �b�
bubbled torus �Fig. 10�b��, �c� SNA �Fig. 10�d��, and �d� chaotic
attractor �Fig. 10�e��. Solid curve and line in �a� and �b� correspond
to the scaling relationship for the quasiperiodic attractors and in �c�
and �d� to the scaling relation for the SNA and chaotic attractor,
respectively.
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ranges of the amplitude E1 and the frequency �1 of the sinu-
soidal force while the other parameters are held fixed. Fol-
lowing this, we have also confirmed the numerical results
experimentally by the snapshots of the phase portraits of the
quasiperiodic attractors and SNAs as well as chaotic attrac-
tors for the corresponding values of the circuit parameters.
Further, the numerical and experimental data have been ana-
lyzed using various quantification measures, indicating the
existence of torus, SNA, creation of SNA through the bub-
bling route, and transition to chaos. In particular, we have
characterized the quasiperiodic attractors, SNAs and chaotic
attractors using the maximal Lyapunov exponent and its vari-
ance, Poincaré maps, Fourier amplitude spectra, spectral dis-
tribution function, and distribution of finite-time Lyapunov
exponents. The distribution of local Lyapunov exponents in-
deed clearly distinguishes the characteristic properties of
both the torus and the SNA, confirming the existence of the
bubbling route to the SNA. The experimental observations,
numerical simulations, and characteristic analysis showed
that the simple dissipative negative conductance series LCR
circuit even with a nonsinusoidal �square wave� force as one
of the quasiperiodic forces does indeed admit strange non-
chaotic behaviors of different types and, in particular, admits
a bubbling route to a SNA.
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APPENDIX: IDENTIFICATION AND CHARAC-
TERIZATION OF SNAs AND THEIR ROUTES

The torus, SNA, and chaotic attractors and the transitions
between them through different routes can be identified and
characterized through various qualitative and quantitative
measures. In this appendix, we summarize the main mea-
sures used in the recent literature �8–10,14,18–24� in the
analysis of transitions to SNAs from torus attractors and
from SNAs to chaotic attractors. In the present work also we
utilize these measures.

1. Qualitative measures

Geometrically smooth �torus� and nonsmooth �SNAs and
chaotic� attractors can be distinguished qualitatively using
the Poincaré surface of sections and Fourier spectra. The
Poincaré surface of section shows smooth strands for quasi-
periodic attractors, nonsmooth strands for SNAs, widely in-
terspersed points throughout the phase space for chaotic at-
tractors, which clearly reveals whether an attractor possesses
a geometrically smooth or complicated structure. The spectra
of the quasiperiodic attractors are concentrated at a small
discrete set of frequencies while the spectra of SNAs and
chaotic attractors have a much richer set of harmonics.

Further, different types of routes to SNAs and their
mechanisms for their formation can also be identified quali-
tatively using the Poincaré surface of sections by observing
the nature of the dynamics in these plots as a function of the
control parameter. Different routes for the formation of
SNAs have different characteristic dynamics in their
Poincaré surface of section.

2. Quantative measures

�a� The largest Lyapunov exponents can be used to distin-
guish between �i� a torus and SNAs and �ii� SNAs and cha-
otic attractors. Torus motion is characterized by a smooth
negative Lyapunov exponent, SNAs are characterized by ei-
ther zero or nonsmooth negative Lyapunov exponents as a
function of control parameters, and chaotic attractors have at
least one positive Lyapunov exponent. Further, the transition
from torus to SNAs exhibits different signatures in the values
of the largest Lyapunov exponents and their variance for dif-
ferent routes to SNAs �14�.

�b� Further, the torus and SNA can also be distinguished
quantitatively by using the spectral distribution function,
which is defined as the number of peaks in the Fourier am-
plitude spectrum larger than some value � �3�. The quasip-
eriodic attractors obey a scaling relationship N���
	 log10�1 /��, while the SNAs satisfy a scaling power-law
relationship N���	�− ,1��2. For chaos, the scaling ex-
ponent �2.

TABLE II. Different signatures of the largest Lyapunov exponents and its variance, and the distribution of finite-time Lyapunov
exponents for the formation of three prominent types of SNAs.

Type of route Lyapunov exponent � Variance �
Distribution of finite-time

Lyapunov exponents P�N ,
�

Heagy-Hammel �16� Irregular in the SNA region and
smooth in the torus region

Small in torus
and large in SNA

Distribution shifts continuously to
larger exponents but the shape differs
for torus and SNA

Gradual fractalization �13� Increases slowly during the
transition from torus to SNA

Increases only slowly Distribution shifts continuously to
larger exponents but the shape
remains the same for torus and SNA

Intermittency �10,22� Abrupt change during the
transition from torus to SNA

Abrupt change at the
transition point

Stretched exponential tail and
asymmetric distribution
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�c� A finer distinction between the different types of routes
for the formation of SNAs can also made using the distribu-
tion of finite-time Lyapunov exponents. Different routes are
characterized by different types of the distribution of finite-
time Lyapunov exponents �10�.

The different signatures of the above quantitative mea-

sures corresponding to different scenarios �routes� for the

formation of three well-known types of SNAs are tabulated

in Table II.
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